Electron Groups on central atom ¹	Electron-Group Shape	Bonds ²	Lone Pairs	$AX_m E_n^{3}$	Molecular Shape	Bond angles	Polarity	Hybrid -ization	Appearance
2	Linear	2	0	AX_2	linear	180°		sp	
3	Trigonal Planar	3	0	AX ₃	trigonal planar			sp^2	
		2	1	AX ₂ E	bent			sp^2	
4	Tetrahedral	4	0	AX4	tetrahedral	109.5°		sp ³	109.5°
		3	1	AX ₃ E	trigonal pyramidal			sp ³	<109.5°
		2	2	AX ₂ E ₂	bent			sp ³	

Using VSEPR to Predict the Shapes of Molecules

¹ "Electron groups or clouds" include bonds, lone pairs, and odd (unpaired) electrons. A multiple bond (double bond or triple bond) counts as one electron group.

² A multiple bond (double bond or triple bond) counts as one bond in the VSEPR model.

³ A = central atom, X = surrounding atoms, E = lone pairs

⁴ You must consider BOTH the change in electronegativity and the molecular symmetry when deterring the polarity of a molecule.

⁵ Electrons in lone pairs take up more room than bonded electrons, when lone pairs are present the bond angles are decreased slightly due to electron repulsion compared to the basic structure without lone pairs.

Electron Groups on central atom ¹	Electron-Group Shape	Bonds ²	Lone Pairs	$AX_m E_n^3$	Molecular Shape	Bond angles	Polarity	Hybrid -ization	Appearance
5	eq = equatorial ax = axial Trigonal Bipyramidal	5	0	AX5	trigonal bipyramidal	120° eq 90° ax		sp ³ d	90° 120°
		4	1	AX4E	seesaw	<120° eq <90° ax		sp ³ d	-908 -120°
		3	2	AX ₃ E ₂	T-shaped	<90°		sp ³ d	
		2	3	AX ₂ E ₃	linear	180°		sp ³ d	
6	Octahedral	6	0	AX_6	octahedral	90°		$sp^{3}d^{2}$	90°
		5	1	AX5E	square pyramidal	<90°		sp ³ d ²	
		4	2	AX ₄ E ₂	square planar	90°		$sp^{3}d^{2}$	