
Unit 4- Impulse Momentum Derivations

NAME:_____

Unit 4.1: An explosion in a rigid pipe shoots three balls out of its ends. A ball of mass, 6M comes out of the right end. A second ball of mass 4M comes out of the left end with a velocity of 2V relative to the first ball. From which end, left or right, does the third ball emerge? Derive an expression in terms of M and V to support your answer.

Unit 4.2: A block of mass M is resting on a horizontal, frictionless table and is attached as shown below to a relaxed spring of spring constant k. A second block of mass 2M and initial speed v_0 collides with and sticks to the first block. Develop expressions for the following quantities in terms of M, k, and v_0 .

- (a). v, the speed of the blocks immediately after impact
- (b). x, the maximum distance the spring is compressed
- (c). T, the period of the subsequent simple harmonic motion (skip until Unit 7 review)

Unit 4.3: Block A of mass M_A slides along a frictionless surface with a velocity of V_A . Block A collides with block B of mass M_B such that block A stops immediately. Block B slides to the right and collides with block C, initially moving to of mass M_C and sticks. Block C was initially moving to the left with velocity V_C . The block B-block C system moves to the right with a velocity of V_{BC} and up a slope of height, H_1 where it encounters a horizontal spring with a spring constant, K. The spring compresses distance X_1 , recoils, and launches the block system horizontally off the slope into projectile motion. While in the air, block C detaches from block B and the center of mass for the system comes to rest at position X_2 to the left of the slope. Block C falls vertically from a height H_2 and lands directly on top of Block A.

- (a). Derive an expression for the velocity of block B immediately after the collision with block B in terms of M_A , V_A and M_B .
- (b). Using your expression in part (a), derive an expression for the velocity (V_{BC}) of the two-block system immediately after the collision in terms of M_A , V_A , M_B , M_C , and V_C .
- (c). Derive an expression for the height (H_1) of the slope. For this question, ignore the spring and assume the block system comes to rest at the top of the slope.