Honors Chemistry Lab 24: Titration Curves of Strong and Weak Acids and Bases

In this experiment you will react the following combinations of strong and weak acids and bases:

- Hydrochloric acid, HCl (strong acid), with sodium hydroxide, NaOH (strong base)
- Hydrochloric acid, HCl (strong acid), with ammonia, NH_{3} (weak base)
- Acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (weak acid), with sodium hydroxide, NaOH (strong base)
- Acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (weak acid), with ammonia, NH_{3} (weak base)

A pH Sensor will be placed in one of the acid solutions. A solution of one of the bases will slowly drip from a buret into the acid solution at a constant rate. As base is added to the acid, you should see a gradual change in pH until the solution gets close to the equivalence point. At the equivalence point, equal numbers of moles of acid and base have been added. Near the equivalence point, a rapid change in pH occurs. Beyond the equivalence point, where more base has been added than acid, you should again observe more gradual changes in pH . A titration curve is normally a plot of pH versus volume of titrant. In this experiment, however, we will monitor and plot pH versus time, and assume that time is proportional to volume of base. The volume being delivered by the buret per unit time should be nearly constant. One objective of this lab is to observe differences in shapes of titration curves when various strengths of acids and bases are combined. You will also learn about the function and selection of appropriate acid-base indicators in this experiment. In order to do several other experiments in this lab manual, you need to be able to interpret the shape of a titration curve.

OBJECTIVES

In this experiment, you will

- Observe differences in shapes of titration curves when various strengths of acids and bases are combined.
- Learn about the function and selection of appropriate acid-base indicators.
- Learn how to interpret the shape of a titration curve.

MATERIALS

LabQuest	$0.10 \mathrm{M} \mathrm{NaOH}^{2}$ solution
LabQuest App	$0.10 \mathrm{M} \mathrm{NH}_{3}$ solution
pH Sensor	$0.10 \mathrm{M} \mathrm{HCl}^{2}$ solution
magnetic stirrer (if available)	$0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution
stirring bar	ring stand
250 mL beaker	2 utility clamps
50 mL buret	distilled water
phenolphthalein	wash bottle
watch or clock with second hand	

PRE-LAB QUESTION: Write the neutralization reaction for all four acid-base reactions. Do not include water and write the equations in your data table on page 3 .

PROCEDURE

1. Obtain and wear goggles.
2. Place 8 mL of 0.1 M HCl solution into a 250 mL beaker. Add about 100 mL of distilled water. Add 3 drops of phenolphthalein acid-base indicator. CAUTION: Handle the hydrochloric acid with care. It can cause painful burns if it comes in contact with the skin.
3. Place the beaker onto a magnetic stirrer and add a small stirring bar.
4. Connect the pH Sensor to LabQuest and choose New from the File menu. If you have an older sensor that does not auto-ID, manually set up the sensor.
5. Use a utility clamp to suspend a pH Sensor on a ring stand as shown in Figure 1. Situate the pH Sensor in the HCl solution and adjust its position toward the outside of the beaker so that it is not struck by the stirring bar.
6. Obtain a 50 mL buret and rinse the buret with a few mL of the 0.1 M NaOH solution. Fill the buret to about the 0 mL mark. CAUTION: Sodium hydroxide solution is caustic. Avoid spilling it on your skin or clothing.
7. On the Meter screen, tap Length. Change the data-collection length to 240 seconds. Select OK. Data collection will last 4 minutes.
8. You are now ready to begin monitoring data. Note: To determine the elapsed time when the indicator changes color in Step 9, monitor the time (in seconds) on a clock as soon as you start data collection.

Start data collection. Carefully open the buret stopcock to provide a dripping rate of about 1 drop per second. Do not worry if the rate is somewhat faster or slower when you first start; initial additions of base will have very little effect on the pH .
9. Watch to see if the phenolphthalein changes color before, at the same time, or after the rapid change in pH at the equivalence point. If phenolphthalein is a suitable indicator for this reaction, it should change from clear to red at about the same time as the jump in pH occurs. In your data table, record the elapsed time when the phenolphthalein color change occurs.
10. When data collection stops after 4 minutes, turn the buret stopcock to stop the flow of NaOH titrant. As you tap each data point, the pH and time values are displayed to the right of the graph. Determine the approximate time for the equivalence point; that is, for the biggest jump in pH in the steep vertical region of the curve. Record this time in the data table. Rinse the pH Sensor and return it to the pH storage solution. Dispose of the beaker contents as directed by your teacher. Clean and dry the 250 mL beaker for the next trial.
11. Before printing the graph of $\mathrm{pH} v s$. time, rescale the y axis from 0 to 14 pH units.
a. Choose Graph Option from the Graph menu.
b. Enter $\mathbf{1 4}$ as the Graph 1 Y-Axis Top value.
c. Enter $\mathbf{0}$ as the Graph 1 Y-Axis Bottom value.
d. Select OK. The y -axis on the displayed graph should now have pH scaled from 0 to 14 .
12. Print a graph of $\mathrm{pH} v s$. time. Label the graph with the acid and base used for the reaction.
13. Repeat the procedure using NaOH titrant and acetic acid solution, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. CAUTION: Handle the solutions with care. You do not need to refill the buret. Add 8 mL of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution to the 250 mL beaker. Add about 100 mL of distilled water and 3 drops of phenolphthalein to the beaker. Rinse the tip of the pH Sensor and position it in the acid solution as you did in Step 5. Repeat the data collection using Steps 8-12 of the procedure.
14. Repeat the procedure using NH_{3} titrant and HCl solution. CAUTION: Handle the solutions with care. Drain the remaining NaOH from the buret and dispose of it as directed by your teacher. Rinse the $50-\mathrm{mL}$ buret with a few mL of the $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution. Fill the buret with NH_{3} solution to about the $0-\mathrm{mL}$ mark. Add 8 mL of 0.10 M HCl solution to the 250 mL beaker. Add about 100 mL of distilled water and 3 drops of phenolphthalein to the beaker. Rinse the sensor and position it in the acid solution as you did in Step 5. Repeat the data collection using Steps 812 of the procedure.
15. Repeat the procedure using NH_{3} titrant and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution. CAUTION: Handle the solutions with care. You do not need to refill the buret. Add 8 mL of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution to the 250 mL beaker. Add about 100 mL of distilled water and 3 drops of phenolphthalein to the beaker. Rinse the pH Sensor and position it in the acid solution as you did in Step 5. Repeat the data collection using Steps 8-12 of the procedure.
16. When you are finished, rinse the pH Sensor with distilled water and return it to the pH storage solution.

POST-LAB QUESTIONS:

1. Examine the time data for each of the Trials 1-4. In which trial(s) did the indicator change color at about the same time as the large increase in pH occurred at the equivalence point? In which trial(s) was there a significant difference in these two times?
2. Phenolphthalein changes from clear to red at a pH value of about 9 . According to your results, with which combination(s) of strong or weak acids and bases can phenolphthalein be used to determine the equivalence point?
3. On each of the four graphs, draw a horizontal line from a pH value of 9 on the vertical axis to its intersection with the titration curve. In which trial(s) does this line intersect the nearly vertical region of the curve? In which trial(s) does this line miss the nearly vertical region of the curve?
4. Compare your answers to Questions 1 and 3. By examining a titration curve, how can you decide which acid-base indicator to use to find the equivalence point?
5. Methyl red is an acid-base indicator that changes color at a pH value of about 5 . From what you learned in this lab, methyl red could be used to determine the equivalence point of what combination of strong or weak acids and bases?
6. Of the four titration curves, which combination of strong or weak acids and bases had the longest vertical region of the equivalence point? The shortest?
7. The acid-base reaction between HCl and NaOH produces a solution with a pH of 7 at the equivalence point $(\mathrm{NaCl}$ $+\mathrm{H}_{2} \mathrm{O}$). Why does an acid-base indicator that changes color at pH 5 or 9 work just as well for this reaction as one that changes color at pH 7 ?
8. In general, how does the shape of a curve with a weak specie $\left(\mathrm{NH}_{3}\right.$ or $\left.\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ differ from the shape of a curve with a strong specie $(\mathrm{NaOH}$ or HCl$)$?
9. Complete each of the equations in the table below.

DATA TABLE

Trial	Equation for acid-base reaction	Time of indicator color change	Time at equivalence point
1		s	s
2		s	s
3	s	s	
4		s	s

