Kinetics- Rate Law Quick Reference Sheet (Big Idea #4)

	Zeroth Order	First Order	Second Order
Differential rate law	$Rate = -\frac{\Delta[A]}{\Delta t} = k$	$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]$	$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]^2$
Concentration vs. time	Concentration	Concentration	Concentration
Integrated rate law	$[A] = [A]_0 - kt$	[A] = $[A]_{0}e^{-kt}$ or $1n[A] = 1n[A]_{0} - kt$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
Straight-line plot to determine rate constant	Slope = $-k$	Slope = $-k$	Slobe = k Time
Relative rate vs. concentration	[A], M Rate, M/s 1 1 2 1 3 1	[A], M Rate, M/s 1 1 2 2 3 3	[A], M Rate, M/s 1 1 2 4 3 9
Half-life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$
Units of <i>k</i> , rate constant	M/s	1/s	M ⁻¹ ·s ⁻¹