Honors Chemistry: Gases Podcast 7 Problem Set

1. Solid potassium chlorate decomposes to produce solid potassium chloride and oxygen gas. What volume of oxygen gas, measured at $40^{\circ} \mathrm{C}$ and 655 mmHg , will be produced when 13.5 g of potassium chlorate is decomposed?
2. How many grams of water are produced when 500 L of hydrogen gas measured at $25^{\circ} \mathrm{C}$ and $0.97-\mathrm{atm}$ is ignited with oxygen?
3. If 500 g of carbon disulfide burns in the presence of oxygen to produce carbon dioxide and sulfur dioxide, how many liters of sulfur dioxide collected over water measured at $27^{\circ} \mathrm{C}$ and $740-\mathrm{mmHg}$, are produced?
4. Write and balance the equation for cellular respiration. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$ will be needed to make 54 mL of CO_{2} at $550^{\circ} \mathrm{C}$ and 8 atm ?
5. How many Liters of carbon dioxide is produced at 300 K and 744 torr when 43.65 grams of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$ is burned?
6. When silicon dioxide reacts with carbon by heating, the following reaction occurs:
$\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{s}) \quad-------->\quad \mathrm{SiC}(\mathrm{s})+2 \mathrm{CO}(\mathrm{g})$
What will be the volume of carbon monoxide collected over water will be produced at $22.0^{\circ} \mathrm{C}$ and 657 mm when 96.25 grams of SiO_{2} completely reacts?
7. Nitroglycerine explodes violently to form several gasses according to the following equation:
$4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{9} \mathrm{~N}_{3}-------->12 \mathrm{CO}_{2}(\mathrm{~g})+\quad \mathrm{O}_{2}(\mathrm{~g})+\quad 6 \mathrm{~N}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A sealed 1.00 mL container filled with 2.8 g of nitroglycerine is detonated. If the temperature inside the container is $300^{\circ} \mathrm{C}$ and assuming that the container would not break upon detonation, what is the pressure inside the container right after detonation? (Put your answer in atm's)
